Show simple item record

dc.contributor.authorBellini, A.
dc.contributor.authorChernozhukov, Victor V.
dc.contributor.authorWang, Lie
dc.date.accessioned2012-07-17T19:16:04Z
dc.date.available2012-07-17T19:16:04Z
dc.date.issued2011-12
dc.date.submitted2011-06
dc.identifier.issn1464-3510
dc.identifier.issn0006-3444
dc.identifier.urihttp://hdl.handle.net/1721.1/71663
dc.description.abstractWe propose a pivotal method for estimating high-dimensional sparse linear regression models, where the overall number of regressors p is large, possibly much larger than n, but only s regressors are significant. The method is a modification of the lasso, called the square-root lasso. The method is pivotal in that it neither relies on the knowledge of the standard deviation σ nor does it need to pre-estimate σ. Moreover, the method does not rely on normality or sub-Gaussianity of noise. It achieves near-oracle performance, attaining the convergence rate σ{(s/n) log p}1/2 in the prediction norm, and thus matching the performance of the lasso with known σ. These performance results are valid for both Gaussian and non-Gaussian errors, under some mild moment restrictions. We formulate the square-root lasso as a solution to a convex conic programming problem, which allows us to implement the estimator using efficient algorithmic methods, such as interior-point and first-order methods.en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/biomet/asr043en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleSquare-root lasso: pivotal recovery of sparse signals via conic programmingen_US
dc.typeArticleen_US
dc.identifier.citationBelloni, A., V. Chernozhukov, and L. Wang. "Square-root lasso: pivotal recovery of sparse signals via conic programming." Biometrika (2011) 98 (4): 791-806.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.approverWang, Lie
dc.contributor.mitauthorChernozhukov, Victor V.
dc.contributor.mitauthorWang, Lie
dc.relation.journalBiometrikaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBelloni, A.; Chernozhukov, V.; Wang, L.en
dc.identifier.orcidhttps://orcid.org/0000-0003-3582-8898
dc.identifier.orcidhttps://orcid.org/0000-0002-3250-6714
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record