dc.contributor.author | Bellini, A. | |
dc.contributor.author | Chernozhukov, Victor V. | |
dc.contributor.author | Wang, Lie | |
dc.date.accessioned | 2012-07-17T19:16:04Z | |
dc.date.available | 2012-07-17T19:16:04Z | |
dc.date.issued | 2011-12 | |
dc.date.submitted | 2011-06 | |
dc.identifier.issn | 1464-3510 | |
dc.identifier.issn | 0006-3444 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/71663 | |
dc.description.abstract | We propose a pivotal method for estimating high-dimensional sparse linear regression models, where the overall number of regressors p is large, possibly much larger than n, but only s regressors are significant. The method is a modification of the lasso, called the square-root lasso. The method is pivotal in that it neither relies on the knowledge of the standard deviation σ nor does it need to pre-estimate σ. Moreover, the method does not rely on normality or sub-Gaussianity of noise. It achieves near-oracle performance, attaining the convergence rate σ{(s/n) log p}1/2 in the prediction norm, and thus matching the performance of the lasso with known σ. These performance results are valid for both Gaussian and non-Gaussian errors, under some mild moment restrictions. We formulate the square-root lasso as a solution to a convex conic programming problem, which allows us to implement the estimator using efficient algorithmic methods, such as interior-point and first-order methods. | en_US |
dc.language.iso | en_US | |
dc.publisher | Oxford University Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1093/biomet/asr043 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Square-root lasso: pivotal recovery of sparse signals via conic programming | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Belloni, A., V. Chernozhukov, and L. Wang. "Square-root lasso: pivotal recovery of sparse signals via conic programming." Biometrika (2011) 98 (4): 791-806. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Economics | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.contributor.approver | Wang, Lie | |
dc.contributor.mitauthor | Chernozhukov, Victor V. | |
dc.contributor.mitauthor | Wang, Lie | |
dc.relation.journal | Biometrika | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Belloni, A.; Chernozhukov, V.; Wang, L. | en |
dc.identifier.orcid | https://orcid.org/0000-0003-3582-8898 | |
dc.identifier.orcid | https://orcid.org/0000-0002-3250-6714 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |