Show simple item record

dc.contributor.authorColliander, J.
dc.contributor.authorKeel, M.
dc.contributor.authorStaffilani, Gigliola
dc.contributor.authorTakaoka, H.
dc.contributor.authorTao, T.
dc.date.accessioned2012-07-17T19:35:34Z
dc.date.available2012-07-17T19:35:34Z
dc.date.issued2010-04
dc.date.submitted2008-08
dc.identifier.issn0020-9910
dc.identifier.issn1432-1297
dc.identifier.urihttp://hdl.handle.net/1721.1/71665
dc.description.abstractWe consider the cubic defocusing nonlinear Schrödinger equation on the two dimensional torus. We exhibit smooth solutions for which the support of the conserved energy moves to higher Fourier modes. This behavior is quantified by the growth of higher Sobolev norms: given any δ[much less-than]1,K [much greater-than] 1, s > 1, we construct smooth initial data u 0 with ||u0||Hs , so that the corresponding time evolution u satisfies u(T)Hs[greater than]K at some time T. This growth occurs despite the Hamiltonian’s bound on ||u(t)||H1 and despite the conservation of the quantity ||u(t)||L2. The proof contains two arguments which may be of interest beyond the particular result described above. The first is a construction of the solution’s frequency support that simplifies the system of ODE’s describing each Fourier mode’s evolution. The second is a construction of solutions to these simpler systems of ODE’s which begin near one invariant manifold and ricochet from arbitrarily small neighborhoods of an arbitrarily large number of other invariant manifolds. The techniques used here are related to but are distinct from those traditionally used to prove Arnold Diffusion in perturbations of Hamiltonian systems.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00222-010-0242-2en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/en_US
dc.sourceSpringeren_US
dc.titleTransfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equationen_US
dc.typeArticleen_US
dc.identifier.citationColliander, J. et al. "Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation." Inventiones Mathematicae (2010) 181.1, p.39-113.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverStaffilani, Gigliola
dc.contributor.mitauthorStaffilani, Gigliola
dc.relation.journalInventiones Mathematicaeen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsColliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T.en
dc.identifier.orcidhttps://orcid.org/0000-0002-8220-4466
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record