Show simple item record

dc.contributor.authorChristiano, Paul F.
dc.contributor.authorKelner, Jonathan Adam
dc.contributor.authorMadry, Aleksander
dc.contributor.authorSpielman, Daniel A.
dc.contributor.authorTeng, Shang-Hua
dc.date.accessioned2012-07-18T20:23:57Z
dc.date.available2012-07-18T20:23:57Z
dc.date.issued2011-06
dc.identifier.isbn978-1-4503-0691-1
dc.identifier.urihttp://hdl.handle.net/1721.1/71698
dc.description.abstractWe introduce a new approach to computing an approximately maximum s-t flow in a capacitated, undirected graph. This flow is computed by solving a sequence of electrical flow problems. Each electrical flow is given by the solution of a system of linear equations in a Laplacian matrix, and thus may be approximately computed in nearly-linear time. Using this approach, we develop the fastest known algorithm for computing approximately maximum s-t flows. For a graph having n vertices and m edges, our algorithm computes a (1-ε)-approximately maximum s-t flow in time ~O(mn1/3ε-11/3). A dual version of our approach gives the fastest known algorithm for computing a (1+ε)-approximately minimum s-t cut. It takes ~O(m+n4/3ε-16/3) time. Previously, the best dependence on m and n was achieved by the algorithm of Goldberg and Rao (J. ACM 1998), which can be used to compute approximately maximum s-t flows in time ~O({m√nε-1), and approximately minimum s-t cuts in time ~O(m+n3/2ε-3).en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grants 0829878)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant 0843915)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (0915487)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant 0915487)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR grant N00014-11-1-0053)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/1993636.1993674en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleElectrical flows, Laplacian systems, and faster approximation of maximum flow in undirected graphsen_US
dc.typeArticleen_US
dc.identifier.citationChristiano, Paul et al. “Electrical Flows, Laplacian Systems, and Faster Approximation of Maximum Flow in Undirected Graphs.” Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC '11, ACM Press, 2011. 273.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverKelner, Jonathan Adam
dc.contributor.mitauthorKelner, Jonathan Adam
dc.contributor.mitauthorChristiano, Paul F.
dc.contributor.mitauthorMadry, Aleksander
dc.relation.journalProceedings of the 43rd annual ACM symposium on Theory of Computing, STOC '11en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsChristiano, Paul; Kelner, Jonathan A.; Madry, Aleksander; Spielman, Daniel A.; Teng, Shang-Huaen
dc.identifier.orcidhttps://orcid.org/0000-0003-0536-0323
dc.identifier.orcidhttps://orcid.org/0000-0002-4257-4198
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record