MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Diurnal Behavior of Evaporative Fraction in the Soil–Vegetation–Atmospheric Boundary Layer Continuum

Author(s)
Gentine, Pierre; Entekhabi, Dara; Polcher, Jan
Thumbnail
DownloadGentine-2011-The Diurnal Behavior.pdf (1.374Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The components of the land surface energy balance respond to periodic incoming radiation forcing with different amplitude and phase characteristics. Evaporative fraction (EF), the ratio of latent heat to available energy at the land surface, supposedly isolates surface control (soil moisture and vegetation) from radiation and turbulent factors. EF is thus supposed to be a diagnostic of the surface energy balance that is constant or self-preserved during daytime. If this holds, EF can be an effective way to estimate surface characteristics from temperature and energy flux measurements. Evidence for EF diurnal self-preservation is based on limited-duration field measurements. The daytime EF self-preservation using both long-term measurements and a model of the soil–vegetation–atmosphere continuum is reexamined here. It is demonstrated that EF is rarely constant and that its temporal power spectrum is wide; thus emphasizing the role of all diurnal frequencies associated with reduced predictability in its daylight response. Oppositely, surface turbulent heat fluxes are characterized by a strong response to the principal daily frequencies (daily and semi-daily) of the solar radiative forcing. It is shown that the phase lag and bias between the turbulent flux components of the surface energy balance are key to the shape of the daytime EF. Therefore, an understanding of the physical factors that affect the phase lag and bias in the response of the components of the surface energy balance to periodic radiative forcing is needed. A linearized model of the soil–vegetation–atmosphere continuum is used that can be solved in terms of harmonics to explore the physical factors that determine the phase characteristics. The dependency of these phase and offsets on environmental parameters—friction velocity, water availability, solar radiation intensity, relative humidity, and boundary layer entrainment—is then analyzed using the model that solves the dynamics of subsurface and atmospheric boundary layer temperatures and heat fluxes in a continuum. Additionally, the asymptotical diurnal lower limit of EF is derived as a function of these surface parameters and shown to be an important indicator of the self-preservation value when the conditions (also identified) for such behavior are present.
Date issued
2011-12
URI
http://hdl.handle.net/1721.1/71727
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of Hydrometeorology
Publisher
American Meteorological Society
Citation
Gentine, Pierre, Dara Entekhabi, and Jan Polcher. “The Diurnal Behavior of Evaporative Fraction in the Soil–Vegetation–Atmospheric Boundary Layer Continuum.” Journal of Hydrometeorology 12.6 (2011): 1530–1546.
Version: Final published version
ISSN
1525-755X
1525-7541

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.