MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution

Author(s)
Donahue, Neil M.; Kroll, Jesse; Pandis, S. N.; Robinson, A. L.
Thumbnail
DownloadDonahue-2012-A two-dimensional vo.pdf (958.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We discuss the use of a two-dimensional volatility-oxidation space (2-D-VBS) to describe organic-aerosol chemical evolution. The space is built around two coordinates, volatility and the degree of oxidation, both of which can be constrained observationally or specified for known molecules. Earlier work presented the thermodynamics of organics forming the foundation of this 2-D-VBS, allowing us to define the average composition (C, H, and O) of organics, including organic aerosol (OA) based on volatility and oxidation state. Here we discuss how we can analyze experimental data, using the 2-D-VBS to gain fundamental insight into organic-aerosol chemistry. We first present a well-understood "traditional" secondary organic aerosol (SOA) system – SOA from α-pinene + ozone, and then turn to two examples of "non-traditional" SOA formation – SOA from wood smoke and dilute diesel-engine emissions. Finally, we discuss the broader implications of this analysis.
Date issued
2012-01
URI
http://hdl.handle.net/1721.1/71793
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Atmospheric Chemistry and Physics
Publisher
Copernicus GmbH
Citation
Donahue, N. M. et al. “A Two-dimensional Volatility Basis Set – Part 2: Diagnostics of Organic-aerosol Evolution.” Atmospheric Chemistry and Physics Discussions 11.9 (2011): 24883–24931.
Version: Final published version
ISSN
1680-7324
1680-7316

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.