MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

137 and 165 GHZ radiometer measurements of hot electrons in LDX

Author(s)
Woskov, Paul P.; Kesner, Jay; Garnier, Darren; Mauel, M. E.
Thumbnail
DownloadWoskov-2009-137 and 165 GHZ radiometer measurements of hot electrons in LDX.pdf (42.68Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Summary form only given. The levitated dipole experiment (LDX) is investigating a levitated dipole magnetic configuration as an alterative confinement concept for fusion plasmas. A 1.1 MA, 68 cm mean diameter, 560 kg superconducting coil (F-coil) is floated for up to 3 hours between cryogenic recoolings by a 280 kA levitating coil during which time plasmas are pulsed by electron cyclotron breakdown and heating (ECH). Up to a total of 15 kW ECH power from three sources at 2.45 (2.5 kW), 6.4 (2.5 kW), and 10.5 GHz (10 kW) are pulsed to sustain plasmas for up to 14 s with a slowly decaying afterglow detectable for over 20 s. Electron densities in the range of 10[superscript 11] cm[superscript -3] with highly peaked profiles (~1/r[superscript 4]) are diagnosed with a 4-channel 60 GHz interferometer. Significant hot electron synchrotron emission has been observed with two heterodyne radiometers, at 137 and 165 GHz, 3 GHz double sideband (DBS) each and noise temp, of 3000 and 2000 K DBS, respectively. The receivers' field of view (FOV) where combined by a 4-port corrugated Al waveguide beamsplitter (quartz) block and transmitted in HE[subscript 11] mode by a 35 mm dia., 1.1 m long ceramic waveguide to a quartz vacuum widow (>95% trans, at 137 & 165 GHz) located below the F-coil. About 9 dB attenuation was necessary in the waveguide to avoid receiver saturation. The radiometer views were directed vertically upward 28 cm from the dipole axis in X-mode orientation. A 2.3 m distance from window to plasma peak resulted in 1/e[superscript 2] plasma FOV diameters of 29 and 24 cm at 137/165 GHz, respectively. Equivalent blackbody temperatures at 137/165 GHz as high as 620/410 eV were observed at the vacuum window during sustained plasma operation, dropping to about 110/60 eV within 1 s at the start of the afterglow and then deceasing exponentially to 0.2/0.1 eV about 24 s later. These are lower limits for the actual peak plasma emission because the receiver FOVs aren't uniformly fi- lled by the plasma and are partially obstructed by the F-coil catcher. Interpretation in terms of the hot electron parameters requires integration over many ECE harmonics. The magnetic field varies over 0.4-3.1 Tesla along the peak density flux contour crossing the FOVs putting all the ECE harmonics from the 2nd to 14th in view. An initial evaluation of the ECE emissivity coefficient for observed 137/165 GHz ratios and signal levels results in a sustained hot electron temperature of about 100 keV with a lower limit on density of 2x10[superscript 9] cm[superscript -3] and afterglow confinement, ?>6 s.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/71813
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
IEEE International Conference on Plasma Science - Abstracts, 2009
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Woskov, P. et al. “137 and 165 GHZ Radiometer Measurements of Hot Electrons in LDX.” IEEE, 2009. 1–1. © Copyright 2009 IEEE
Version: Final published version
ISBN
978-1-4244-2618-8
978-1-4244-2617-1
ISSN
0730-9244

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.