MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Matrix Probing and its Conditioning

Author(s)
Chiu, Jiawei; Demanet, Laurent
Thumbnail
DownloadChiu-2012-MATRIX PROBING AND I.pdf (547.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
When a matrix A with n columns is known to be well-approximated by a linear combination of basis matrices B1, . . . , Bp, we can apply A to a random vector and solve a linear system to recover this linear combination. The same technique can be used to obtain an approximation to A[superscript −1]. A basic question is whether this linear system is well-conditioned. This is important for two reasons: a well-conditioned system means (1) we can invert it and (2) the error in the reconstruction can be controlled. In this paper, we show that if the Gram matrix of the Bj ’s is sufficiently well-conditioned and each Bj has a high numerical rank, then n [infinity symbol] p log[superscript 2] n will ensure that the linear system is well-conditioned with high probability. Our main application is probing linear operators with smooth pseudodifferential symbols such as the wave equation Hessian in seismic imaging [L. Demanet et al., Appl. Comput. Harmonic Anal., 32 (2012), pp. 155–168]. We also demonstrate numerically that matrix probing can produce good preconditioners for inverting elliptic operators in variable media.
Date issued
2012-02
URI
http://hdl.handle.net/1721.1/71842
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
SIAM Journal on Numerical Analysis
Publisher
Society for Industrial and Applied Mathematics
Citation
Chiu, Jiawei, and Laurent Demanet. “Matrix Probing and Its Conditioning.” SIAM Journal on Numerical Analysis 50.1 (2012): 171–193. Web.
Version: Final published version
ISSN
0036-1429

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.