MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing Neuronal Interactions of Cell Assemblies during General Anesthesia

Author(s)
Chen, Zhe; Vijayan, Sujith; Ching, ShiNung; Hale, Gregory John; Flores Plaza, Francisco Javier; Wilson, Matthew A.; Brown, Emery N.; ... Show more Show less
Thumbnail
Downloadembc11_anesthesia_short.pdf (163.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Understanding the way in which groups of cortical neurons change their individual and mutual firing activity during the induction of general anesthesia may improve the safe usage of many anesthetic agents. Assessing neuronal interactions within cell assemblies during anesthesia may be useful for understanding the neural mechanisms of general anesthesia. Here, a point process generalized linear model (PPGLM) was applied to infer the functional connectivity of neuronal ensembles during both baseline and anesthesia, in which neuronal firing rates and network connectivity might change dramatically. A hierarchical Bayesian modeling approach combined with a variational Bayes (VB) algorithm is used for statistical inference. The effectiveness of our approach is evaluated with synthetic spike train data drawn from small and medium-size networks (consisting of up to 200 neurons), which are simulated using biophysical voltage-gated conductance models. We further apply the analysis to experimental spike train data recorded from rats' barrel cortex during both active behavior and isoflurane anesthesia conditions. Our results suggest that that neuronal interactions of both putative excitatory and inhibitory connections are reduced after the induction of isoflurane anesthesia.
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/71856
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011
Publisher
Institute of Electrical and Electronics Engineers
Citation
Chen, Zhe et al. "Assessing Neuronal Interactions of Cell Assemblies during General Anesthesia." Proceedings of the 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, Aug. 30-Sept. 3, 2011. 4175–4178. © 2011 IEEE.
Version: Author's final manuscript
Other identifiers
INSPEC Accession Number: 12424449
ISBN
978-1-4244-4122-8
978-1-4244-4121-1
ISSN
1557-170X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.