MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New Kludge scheme for the construction of approximate waveforms for extreme-mass-ratio inspirals

Author(s)
Sopuerta, Carlos F.; Yunes, Nicolas
Thumbnail
DownloadSopuerta-2011-New Kludge scheme for the construction of.pdf (1.529Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce a new kludge scheme to model the dynamics of generic extreme mass-ratio inspirals (stellar compact objects spiraling into a spinning supermassive black hole) and to produce the gravitational waveforms that describe the gravitational-wave emission of these systems. This scheme combines tools from different techniques in General Relativity: It uses amultipolar, post-Minkowskian expansion for the far-zone metric perturbation (which provides the gravitational waveforms, here taken up to mass hexadecapole and current octopole order) and for the local prescription of the self-force (since we are lacking a general prescription for it); a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesics. The orbital evolution is thus equivalent to solving the geodesic equations with time-dependent orbital elements, as dictated by the multipolar post-Minkowskian radiation-reaction prescription. To complete the scheme, both the orbital evolution and wave generation require to map the Boyer-Lindquist coordinates of the orbits to the harmonic coordinates in which the different multipolar post-Minkowskian quantities have been derived, a mapping that we provide explicitly in this paper. This new kludge scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme mass ratios to systems with more moderate mass ratios, and hence can provide valuable information for future space-based gravitational-wave observatories like the Laser Interferometer Space Antenna and even for advanced ground detectors. Finally, due to the local character in time of our multipolar post-Minkowskian self-force, this scheme can be used to perform studies of the possible appearance of transient resonances in generic inspirals.
Date issued
2011-12
URI
http://hdl.handle.net/1721.1/71865
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Physical Review D
Publisher
American Physical Society
Citation
Sopuerta, Carlos F., and Nicolas Yunes. "New Kludge scheme for the construction of approximate waveforms for extreme-mass-ratio inspirals." Physical Review D 84 (2011): 124060-1-124060-35. http://link.aps.org/doi/10.1103/PhysRevD.84.124060 Copyright 2011 American Physical Society
Version: Final published version
ISSN
0556-2821

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.