Fast scheduling for optical flow switching
Author(s)
Zhang, Lei; Chan, Vincent W. S.
DownloadChan-Fast scheduling.pdf (294.0Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Optical Flow Switching (OFS) is a promising architecture to provide end users with large transactions with cost-effective direct access to core network bandwidth. For very dynamic sessions that are bursty and only last a short time (~1S), the network management and control effort can be substantial, even unimplementable, if fast service of the order of one round trip time is needed. In this paper, we propose a fast scheduling algorithm that enables OFS to set up end-to-end connections for users with urgent large transactions with a delay of slightly more than one round-trip time. This fast setup of connections is achieved by probing independent paths between source and destination, with information about network regions periodically updated in the form of entropy. We use a modified Bellman-Ford algorithm to select the route with the least blocking probability. By grouping details of network states into an average entropy, we can greatly reduce the amount of network state information gathered and disseminated, and thus reduce the network management and control burden to a manageable amount; we can also avoid having to make detailed assumptions about the statistical model of the traffic.
Date issued
2010-12Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
2010 IEEE Global Telecommunications Conference
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Zhang, Lei, and Vincent Chan. “Fast Scheduling of Optical Flow Switching.” IEEE, 2010. 1–6. © Copyright 2010 IEEE
Version: Final published version
ISBN
978-1-4244-5637-6
978-1-4244-5636-9
ISSN
1930-529X