Show simple item record

dc.contributor.authorBochevarov, Arteum D.
dc.contributor.authorFriesner, Richard A.
dc.contributor.authorLippard, Stephen J.
dc.date.accessioned2012-08-01T15:41:38Z
dc.date.available2012-08-01T15:41:38Z
dc.date.issued2010-11
dc.date.submitted2010-07
dc.identifier.issn1549-9618
dc.identifier.issn1549-9626
dc.identifier.urihttp://hdl.handle.net/1721.1/71930
dc.description.abstractWe report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP, M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron atoms; cc-pVDZ on the rest of atoms) for prediction of the isomer shift (IS) and quadrupole splitting (QS) parameters of Mössbauer spectroscopy. Two sources of geometry (density functional theory optimized and X-ray) are used. Our data set consists of 31 iron-containing compounds (35 signals), the Mössbauer spectra of which were determined at liquid helium temperature and where the X-ray geometries are known. Our results indicate that the larger and uncontracted Partridge-1 basis set produces slightly more accurate linear correlations of electronic density used for prediction of IS and noticeably more accurate results for the QS parameters. We confirm and discuss the earlier observation of Noodleman and co-workers that different oxidation states of iron produce different IS calibration lines. The B3LYP and O3LYP functionals have the lowest errors for either IS or QS. BPW91, OLYP, PBE, and M06 have mixed success, whereas SVWN5 and M06-2X demonstrate the worst performance. Finally, our calibrations and conclusions regarding the best functional to compute the Mössbauer characteristics are applied to candidate structures for the peroxo and Q intermediates of the enzyme methane monooxygenase hydroxylase (MMOH) and are compared to experimental data in the literature.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant Number GM 32134)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ct100398men_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titlePrediction of [superscript 57] Fe Mossbauer Parameters by Density Functional Theory: A Benchmark Studyen_US
dc.typeArticleen_US
dc.identifier.citationBochevarov, Arteum D., Richard A. Friesner, and Stephen J. Lippard. “Prediction of 57 Fe Mössbauer Parameters by Density Functional Theory: A Benchmark Study.” Journal of Chemical Theory and Computation 6.12 (2010): 3735–3749.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.approverLippard, Stephen J.
dc.contributor.mitauthorLippard, Stephen J.
dc.relation.journalJournal of Chemical Theory and Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBochevarov, Arteum D.; Friesner, Richard A.; Lippard, Stephen J.en
dc.identifier.orcidhttps://orcid.org/0000-0002-2693-4982
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record