Show simple item record

dc.contributor.authorChan, Timothy C. Y.
dc.contributor.authorTsitsiklis, John N.
dc.contributor.authorBortfeld, Thomas
dc.date.accessioned2012-08-01T19:54:24Z
dc.date.available2012-08-01T19:54:24Z
dc.date.issued2009-12
dc.date.submitted2009-11
dc.identifier.issn0031-9155
dc.identifier.issn1361-6560
dc.identifier.urihttp://hdl.handle.net/1721.1/71949
dc.description.abstractIn radiation therapy, intensity maps involving margins have long been used to counteract the effects of dose blurring arising from motion. More recently, intensity maps with increased intensity near the edge of the tumour (edge enhancements) have been studied to evaluate their ability to offset similar effects that affect tumour coverage. In this paper, we present a mathematical methodology to derive margin and edge-enhanced intensity maps that aim to provide tumour coverage while delivering minimum total dose. We show that if the tumour is at most about twice as large as the standard deviation of the blurring distribution, the optimal intensity map is a pure scaling increase of the static intensity map without any margins or edge enhancements. Otherwise, if the tumour size is roughly twice (or more) the standard deviation of motion, then margins and edge enhancements are preferred, and we present formulae to calculate the exact dimensions of these intensity maps. Furthermore, we extend our analysis to include scenarios where the parameters of the motion distribution are not known with certainty, but rather can take any value in some range. In these cases, we derive a similar threshold to determine the structure of an optimal margin intensity map.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (grant R01-CA103904)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (grant R01-CA118200)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)en_US
dc.description.sponsorshipSiemens Aktiengesellschaften_US
dc.description.sponsorshipMassachusetts Institute of Technology. Hugh Hampton Young Memorial Fund fellowshipen_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0031-9155/55/2/012en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceTsitsiklis via Amy Stouten_US
dc.titleOptimal margin and edge-enhanced intensity maps in the presence of motion and uncertaintyen_US
dc.typeArticleen_US
dc.identifier.citationChan, Timothy C Y, John N Tsitsiklis, and Thomas Bortfeld. “Optimal margin and edge-enhanced intensity maps in the presence of motion and uncertainty.” Physics in Medicine and Biology 55.2 (2010): 515-533.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverTsitsiklis, John N.
dc.contributor.mitauthorTsitsiklis, John N.
dc.relation.journalPhysics in Medicine and Biologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChan, Timothy C Y; Tsitsiklis, John N; Bortfeld, Thomasen
dc.identifier.orcidhttps://orcid.org/0000-0003-2658-8239
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record