MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DCC: A Dependable Cache Coherence Multicore Architecture

Author(s)
Khan, Omer; Lis, Mieszko; Sinangil, Yildiz; Devadas, Srinivas
Thumbnail
DownloadDevadas-DCC.pdf (362.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Cache coherence lies at the core of functionally-correct operation of shared memory multicores. Traditional directory-based hardware coherence protocols scale to large core counts, but they incorporate complex logic and directories to track coherence states. Technology scaling has reached miniaturization levels where manufacturing imperfections, device unreliability and occurrence of hard errors pose a serious dependability challenge. Broken or degraded functionality of the coherence protocol can lead to a non-operational processor or user visible performance loss. In this paper, we propose a dependable cache coherence architecture (DCC) that combines the traditional directory protocol with a novel execution-migration-based architecture to ensure dependability that is transparent to the programmer. Our architecturally redundant execution migration architecture only permits one copy of data to be cached anywhere in the processor: when a thread accesses an address not locally cached on the core it is executing on, it migrates to the appropriate core and continues execution there. Both coherence mechanisms can co-exist in the DCC architecture and we present architectural extensions to seamlessly transition between the directory and execution migration protocols.
Date issued
2011-02
URI
http://hdl.handle.net/1721.1/71958
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Computer Architecture Letters
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Khan, Omer et al. “DCC: A Dependable Cache Coherence Multicore Architecture.” IEEE Computer Architecture Letters 10.1 (2011): 12–15.
Version: Author's final manuscript
ISSN
1556-6056

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.