MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions

Author(s)
Buchwald, Stephen Leffler; Jones, Gavin O.; Houk, K. N.; Liu, Peng
Thumbnail
DownloadBuchwald_Computational Explorations.pdf (2.657Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Computational investigations of ligand-directed selectivities in Ullmann-type coupling reactions of methanol and methylamine with iodobenzene by β-diketone- and 1,10-phenanthroline-ligated CuI complexes are reported. Density functional theory calculations using several functionals were performed on both the nucleophile formation and aryl halide activation steps of these reactions. The origin of ligand-directed selectivities in N- versus O-arylation reactions as described in a previous publication (J. Am. Chem. Soc. 2007, 129, 3490−3491) were studied and explained. The selectivities observed experimentally are derived not from initial CuI(nucleophile) complex formation but from the subsequent steps involving aryl halide activation. The arylation may occur via single-electron transfer (SET) or iodine atom transfer (IAT), depending on the electron-donating abilities of the ligand and nucleophile. Mechanisms involving either oxidative addition/reductive elimination or σ-bond metathesis are disfavored. SET mechanisms are favored in reactions promoted by the β-diketone ligand; N-arylation is predicted to be favored in these cases, in agreement with experimental results. The phenanthroline ligand promotes O-arylation reactions via IAT mechanisms in preference to N-arylation reactions, which occur via SET mechanisms; this result is also in agreement with experimental results.
Date issued
2010-04
URI
http://hdl.handle.net/1721.1/72018
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
Buchwald, Stephen Leffler, et al. "Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions." Journal of the American Chemical Society 132.17 (2010): 6205–6213. Copyright © 2010 American Chemical Society
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.