Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise
Author(s)
Cai, T. Tony; Wang, Lie
DownloadWang_Orthogonal Matching.pdf (196.1Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We consider the orthogonal matching pursuit (OMP) algorithm for the recovery of a high-dimensional sparse signal based on a small number of noisy linear measurements. OMP is an iterative greedy algorithm that selects at each step the column, which is most correlated with the current residuals. In this paper, we present a fully data driven OMP algorithm with explicit stopping rules. It is shown that under conditions on the mutual incoherence and the minimum magnitude of the nonzero components of the signal, the support of the signal can be recovered exactly by the OMP algorithm with high probability. In addition, we also consider the problem of identifying significant components in the case where some of the nonzero components are possibly small. It is shown that in this case the OMP algorithm will still select all the significant components before possibly selecting incorrect ones. Moreover, with modified stopping rules, the OMP algorithm can ensure that no zero components are selected.
Date issued
2011-07Department
Massachusetts Institute of Technology. Department of MathematicsJournal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers
Citation
Cai, T. Tony, and Lie Wang. “Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise.” IEEE Transactions on Information Theory 57.7 (2011): 4680–4688.
Version: Author's final manuscript
Other identifiers
INSPEC Accession Number: 12068809
ISSN
0018-9448