Show simple item record

dc.contributor.authorChen, Beifang
dc.contributor.authorStanley, Richard P.
dc.date.accessioned2012-08-08T20:21:58Z
dc.date.available2012-08-08T20:21:58Z
dc.date.issued2011-08
dc.date.submitted2010-12
dc.identifier.issn0911-0119
dc.identifier.issn1435-5914
dc.identifier.urihttp://hdl.handle.net/1721.1/72051
dc.description.abstractWe study modular and integral flow polynomials of graphs by means of subgroup arrangements and lattice polytopes. We introduce an Eulerian equivalence relation on orientations, flow arrangements, and flow polytopes; and we apply the theory of Ehrhart polynomials to obtain properties of modular and integral flow polynomials. The emphasis is on the geometrical treatment through subgroup arrangements and Ehrhart polynomials. Such viewpoint leads to a reciprocity law on the modular flow polynomial, which gives rise to an interpretation on the values of the modular flow polynomial at negative integers and answers a question by Beck and Zaslavsky.en_US
dc.description.sponsorshipRegal Entertainment Group (Competitive Earmarked Research Grants 600703)en_US
dc.description.sponsorshipRegal Entertainment Group (Competitive Earmarked Research Grants 600506)en_US
dc.description.sponsorshipRegal Entertainment Group (Competitive Earmarked Research Grants 600608)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00373-011-1080-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleOrientations, lattice polytopes, and group arrangements II: Modular and integral flow Polynomials of graphsen_US
dc.typeArticleen_US
dc.identifier.citationChen, Beifang, and Richard P. Stanley. “Orientations, Lattice Polytopes, and Group Arrangements II: Modular and Integral Flow Polynomials of Graphs.” Graphs and Combinatorics (2011).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverStanley, Richard P.
dc.contributor.mitauthorStanley, Richard P.
dc.relation.journalGraphs and Combinatoricsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChen, Beifang; Stanley, Richard P.en
dc.identifier.orcidhttps://orcid.org/0000-0003-3123-8241
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record