Show simple item record

dc.contributor.authorAaronson, Scott
dc.date.accessioned2012-08-09T14:39:07Z
dc.date.available2012-08-09T14:39:07Z
dc.date.issued2011-06
dc.identifier.isbn978-3-642-20711-2
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/72065
dc.description6th International Computer Science Symposium in Russia, CSR 2011, St. Petersburg, Russia, June 14-18, 2011. Proceedingsen_US
dc.description.abstractIn a sampling problem, we are given an input x\in\left\{ 0,1\right\} ^{n} , and asked to sample approximately from a probability distribution \mathcal{D}_{x}strings. In a search problem, we are given an input x\in\left\{ 0,1\right\} ^{n} , and asked to find a member of a nonempty set A x with high probability. (An example is finding a Nash equilibrium.) In this paper, we use tools from Kolmogorov complexity to show that sampling and search problems are “essentially equivalent.” More precisely, for any sampling problem S, there exists a search problem R S such that, if \mathcal{C} is any “reasonable” complexity class, then R S is in the search version of \mathcal{C} if and only if S is in the sampling version. What makes this nontrivial is that the same R S works for every \mathcal{C}. As an application, we prove the surprising result that SampP = SampBQP if and only if FBPP = FBQP. In other words, classical computers can efficiently sample the output distribution of every quantum circuit, if and only if they can efficiently solve every search problem that quantum computers can solve.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0844626)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (YFA grant)en_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.language.isoen_US
dc.publisherSpringer Berlin/Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-20712-9_1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleThe equivalence of sampling and searchingen_US
dc.typeArticleen_US
dc.identifier.citationAaronson, Scott. “The Equivalence of Sampling and Searching.” Computer Science – Theory and Applications. Ed. Alexander Kulikov & Nikolay Vereshchagin. Vol. 6651. Lecture Notes in Computer Science: Springer Berlin Heidelberg, 2011. 1-14. Web. 9 Aug. 2012.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverAaronson, Scott
dc.contributor.mitauthorAaronson, Scott
dc.relation.journalComputer Science – Theory and Applicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsAaronson, Scotten
dc.identifier.orcidhttps://orcid.org/0000-0003-1333-4045
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record