MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regularizing GRAPPA using simultaneous sparsity to recover de-noised images

Author(s)
Goyal, Vivek K.; Polimeni, Jonathan R.; Grady, Leo; Wald, Lawrence L.; Adalsteinsson, Elfar; Weller, Daniel Stuart; ... Show more Show less
Thumbnail
DownloadAdalsteinsson_Regularizing GRAPPA.pdf (547.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
To enable further acceleration of magnetic resonance (MR) imaging, compressed sensing (CS) is combined with GRAPPA, a parallel imaging method, to reconstruct images from highly undersampled data with significantly improved RMSE compared to reconstructions using GRAPPA alone. This novel combination of GRAPPA and CS regularizes the GRAPPA kernel computation step using a simultaneous sparsity penalty function of the coil images. This approach can be implemented by formulating the problem as the joint optimization of the least squares fit of the kernel to the ACS lines and the sparsity of the images generated using GRAPPA with the kernel.
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/72066
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of Wavelets and Sparsity XIV, Conference 2011
Publisher
Society of Photo-optical Instrumentation Engineers
Citation
Weller, Daniel S. et al. “Regularizing GRAPPA Using Simultaneous Sparsity to Recover De-noised Images.” Wavelets and sparsity XIV, 21-24 August 2011, San Diego, California, United States. 81381M–81381M–9. (Proceedings of the SPIE ; v. 8138). Web. © 2011 SPIE.
Version: Final published version
ISBN
9780819487483
0819487481
ISSN
0277-786X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.