Show simple item record

dc.contributor.authorAaronson, Scott
dc.date.accessioned2012-08-09T14:47:58Z
dc.date.available2012-08-09T14:47:58Z
dc.date.issued2011-12
dc.date.submitted2011-04
dc.identifier.issn1471-2946
dc.identifier.urihttp://hdl.handle.net/1721.1/72067
dc.description.abstractOne of the crown jewels of complexity theory is Valiant's theorem that computing the permanent of an n×n matrix is #P-hard. Here we show that, by using the model of linear-optical quantum computing—and in particular, a universality theorem owing to Knill, Laflamme and Milburn—one can give a different and arguably more intuitive proof of this theorem.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0844626)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (YFA grant)en_US
dc.language.isoen_US
dc.publisherRoyal Society, Theen_US
dc.relation.isversionofhttp://dx.doi.org/10.1098/rspa.2011.0232en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleA linear-optical proof that the permanent is #P-harden_US
dc.typeArticleen_US
dc.identifier.citationAaronson, S. “A linear-optical proof that the permanent is #P-hard.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467.2136 (2011): 3393-3405.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverAaronson, Scott
dc.contributor.mitauthorAaronson, Scott
dc.relation.journalProceedings of The Royal Society A: Mathematical, Physical and Engineering Sciencesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsAaronson, S.en
dc.identifier.orcidhttps://orcid.org/0000-0003-1333-4045
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record