Show simple item record

dc.contributor.authorPinto, Nicolas
dc.contributor.authorBarhomi, Youssef
dc.contributor.authorCox, David D.
dc.contributor.authorDiCarlo, James
dc.date.accessioned2012-08-16T14:46:39Z
dc.date.available2012-08-16T14:46:39Z
dc.date.issued2011-01
dc.identifier.isbn978-1-4244-9496-5
dc.identifier.issn1550-5790
dc.identifier.otherINSPEC Accession Number: 11823532
dc.identifier.urihttp://hdl.handle.net/1721.1/72169
dc.description.abstractTolerance (“invariance”) to identity-preserving image variation (e.g. variation in position, scale, pose, illumination) is a fundamental problem that any visual object recognition system, biological or engineered, must solve. While standard natural image database benchmarks are useful for guiding progress in computer vision, they can fail to probe the ability of a recognition system to solve the invariance problem. Thus, to understand which computational approaches are making progress on solving the invariance problem, we compared and contrasted a variety of state-of-the-art visual representations using synthetic recognition tasks designed to systematically probe invariance. We successfully re-implemented a variety of state-of-the-art visual representations and confirmed their published performance on a natural image benchmark. We here report that most of these representations perform poorly on invariant recognition, but that one representation shows significant performance gains over two baseline representations. We also show how this approach can more deeply illuminate the strengths and weaknesses of different visual representations and thus guide progress on invariant object recognition.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/WACV.2011.5711540en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceDiCarlo via Courtney Crummetten_US
dc.titleComparing state-of-the-art visual features on invariant object recognition tasksen_US
dc.typeArticleen_US
dc.identifier.citationPinto, Nicolas et al. “Comparing State-of-the-art Visual Features on Invariant Object Recognition Tasks.” Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision (WACV), 5-7 Jan. 2011, Kona, HI, USA, IEEE, 2011. 463–470. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.approverDiCarlo, James
dc.contributor.mitauthorDiCarlo, James
dc.contributor.mitauthorPinto, Nicolas
dc.contributor.mitauthorBarhomi, Youssef
dc.contributor.mitauthorDiCarlo, James
dc.relation.journalProceedings of the 2011 IEEE Workshop on Applications of Computer Vision (WACV)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsPinto, Nicolas; Barhomi, Youssef; Cox, David D.; DiCarlo, James J.en
dc.identifier.orcidhttps://orcid.org/0000-0002-1592-5896
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record