Show simple item record

dc.contributor.authorIndyk, Piotr
dc.contributor.authorSzarek, Stanislaw
dc.date.accessioned2012-08-17T12:46:05Z
dc.date.available2012-08-17T12:46:05Z
dc.date.issued2010-08
dc.identifier.isbn978-3-642-22934-3
dc.identifier.urihttp://hdl.handle.net/1721.1/72179
dc.descriptionProceedings of the 14th International Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011.en_US
dc.description.abstractIt has been known since 1970’s that the N-dimensional ℓ[subscript 1]-space contains almost Euclidean subspaces whose dimension is Ω(N). However, proofs of existence of such subspaces were probabilistic, hence non-constructive, which made the results not-quite-suitable for subsequently discovered applications to high-dimensional nearest neighbor search, error-correcting codes over the reals, compressive sensing and other computational problems. In this paper we present a “low-tech” scheme which, for any γ> 0, allows us to exhibit almost Euclidean Ω(N)-dimensional subspaces of ℓ[subscript 1][superscript N] while using only N γ random bits. Our results extend and complement (particularly) recent work by Guruswami-Lee-Wigderson. Characteristic features of our approach include (1) simplicity (we use only tensor products) and (2) yielding almost Euclidean subspaces with arbitrarily small distortions.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Grant number CCF-0728645)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-15369-3_47en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleAlmost-Euclidean Subspaces of ℓ1N via Tensor Products: A Simple Approach to Randomness Reductionen_US
dc.typeArticleen_US
dc.identifier.citationIndyk, Piotr, and Stanislaw Szarek. “Almost-Euclidean Subspaces of ℓ1N via Tensor Products: A Simple Approach to Randomness Reduction.” Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Ed. Maria Serna et al. (Lecture Notes in Computer Science Vol. 6302). Berlin, Heidelberg, 2010. 632–641.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverIndyk, Piotr
dc.contributor.mitauthorIndyk, Piotr
dc.relation.journalApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedingsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsIndyk, Piotr; Szarek, Stanislawen
dc.identifier.orcidhttps://orcid.org/0000-0002-7983-9524
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record