MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ZStream: A cost-based query processor for adaptively detecting composite events

Author(s)
Mei, Yuan; Madden, Samuel R.
Thumbnail
DownloadMadden_Zstream.pdf (1.188Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Composite (or Complex) event processing (CEP) systems search sequences of incoming events for occurrences of user-specified event patterns. Recently, they have gained more attention in a variety of areas due to their powerful and expressive query language and performance potential. Sequentiality (temporal ordering) is the primary way in which CEP systems relate events to each other. In this paper, we present a CEP system called ZStream to efficiently process such sequential patterns. Besides simple sequential patterns, ZStream is also able to detect other patterns, including conjunction, disjunction, negation and Kleene closure. Unlike most recently proposed CEP systems, which use non-deterministic finite automata (NFA's) to detect patterns, ZStream uses tree-based query plans for both the logical and physical representation of query patterns. By carefully designing the underlying infrastructure and algorithms, ZStream is able to unify the evaluation of sequence, conjunction, disjunction, negation, and Kleene closure as variants of the join operator. Under this framework, a single pattern in ZStream may have several equivalent physical tree plans, with different evaluation costs. We propose a cost model to estimate the computation costs of a plan. We show that our cost model can accurately capture the actual runtime behavior of a plan, and that choosing the optimal plan can result in a factor of four or more speedup versus an NFA based approach. Based on this cost model and using a simple set of statistics about operator selectivity and data rates, ZStream is able to adaptively and seamlessly adjust the order in which it detects patterns on the fly. Finally, we describe a dynamic programming algorithm used in our cost model to efficiently search for an optimal query plan for a given pattern.
Date issued
2009
URI
http://hdl.handle.net/1721.1/72190
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the 2009 ACM SIGMOD International Conference on Management of data (SIGMOD '09 )
Publisher
Association for Computing Machinery (ACM)
Citation
Yuan Mei and Samuel Madden. 2009. ZStream: a cost-based query processor for adaptively detecting composite events. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data (SIGMOD '09), Carsten Binnig and Benoit Dageville (Eds.). ACM, New York, NY, USA, 193-206.
Version: Author's final manuscript
ISSN
978-1-60558-551-2

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.