MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic dominant singular vectors method for variation-aware extraction

Author(s)
El-Moselhy, Tarek Ali; Daniel, Luca
Thumbnail
DownloadDaniel-Stochastic Dominant.pdf (547.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper we present an efficient algorithm for variation-aware interconnect extraction. The problem we are addressing can be formulated mathematically as the solution of linear systems with matrix coefficients that are dependent on a set of random variables. Our algorithm is based on representing the solution vector as a summation of terms. Each term is a product of an unknown vector in the deterministic space and an unknown direction in the stochastic space. We then formulate a simple nonlinear optimization problem which uncovers sequentially the most relevant directions in the combined deterministic-stochastic space. The complexity of our algorithm scales with the sum (rather than the product) of the sizes of the deterministic and stochastic spaces, hence it is orders of magnitude more efficient than many of the available state of the art techniques. Finally, we validate our algorithm on a variety of onchip and off-chip capacitance and inductance extraction problems, ranging from moderate to very large size, not feasible using any of the available state of the art techniques.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/72204
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 47th Design Automation Conference (DAC '10 )
Publisher
Association for Computing Machinery (ACM)
Citation
Tarek El-Moselhy and Luca Daniel. 2010. Stochastic dominant singular vectors method for variation-aware extraction. In Proceedings of the 47th Design Automation Conference (DAC '10). ACM, New York, NY, USA, 667-672. Copyright © 2010 ACM, Inc.
Version: Final published version
ISBN
978-1-4503-0002-5

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.