Spin-orbit alignment for the circumbinary planet host Kepler-16 A
Author(s)
Winn, Joshua Nathan
Downloadwinn16.pdf (480.0Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star's rotation period is 35.1 ± 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1fdg6 ± 2fdg4. Therefore, the three largest sources of angular momentum—the stellar orbit, the planetary orbit, and the primary's rotation—are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the "pseudosynchronous" period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2-4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.
Date issued
2011-11Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space ResearchJournal
Astrophysical Journal. Letters
Publisher
Institute of Physics Publishing
Citation
Winn, Joshua N. et al. "SPIN-ORBIT ALIGNMENT FOR THE CIRCUMBINARY PLANET HOST KEPLER-16 A." Astrophysical Journal. Letters, 741.1 (2011): 6pp.
Version: Author's final manuscript
ISSN
2041-8205
2041-8213