MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermodynamic and hydrodynamic constraints on overpressure caused by hydrate dissociation: A pore‐scale model

Author(s)
Holtzman, Ran; Juanes, Ruben
Thumbnail
DownloadJuanes_Thermodynamic and 1-21-12.pdf (763.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
It has been suggested that volume expansion caused by hydrate dissociation in sediment pores can result in large overpressure, which in turn may destabilize the sediment and trigger massive submarine landslides. Here, we investigate the pressure evolution during thermally-induced dissociation, by means of a pore-scale model that couples dissociation kinetics, multiphase flow and geomechanics. Dissociation is controlled by a self-preservation mechanism: increasing pore pressure reduces the driving force for dissociation. Hence, the overpressure is constrained by the phase equilibrium pressure, regardless of the kinetic rate of dissociation, heat supply, and sediment permeability. Furthermore, we find that the timescale for buildup of pressure by dissociation is typically much larger than that for its dissipation by drainage. Consequently, the overpressure is controlled by the capillary entry thresholds, which depend on the mode of gas invasion. In low-permeability systems, fracturing is the preferred mechanism, occurring at capillary pressures lower than the entry thresholds in the undeformed sediment. Our results suggest that while large overpressures cannot be sustained by rapid dissociation in natural systems, dissociation can induce important geomechanical effects. Gas migration by fracturing provides a possible link between dissociation, sediment deformation and methane venting.
Date issued
2011-07
URI
http://hdl.handle.net/1721.1/72351
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Holtzman, R., and R. Juanes. “Thermodynamic and Hydrodynamic Constraints on Overpressure Caused by Hydrate Dissociation: A Pore-scale Model.” Geophysical Research Letters 38.14 (2011). Copyright 2011 by the American Geophysical Union
Version: Final published version
ISSN
0094-8276

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.