Show simple item record

dc.contributor.authorRominger, Jeffrey Tsaros
dc.contributor.authorNepf, Heidi
dc.date.accessioned2012-08-27T19:37:19Z
dc.date.available2012-08-27T19:37:19Z
dc.date.issued2011-06
dc.date.submitted2011-02
dc.identifier.issn0022-1120
dc.identifier.issn1469-7645
dc.identifier.urihttp://hdl.handle.net/1721.1/72354
dc.description.abstractThe flow at the leading edge and in the interior of a rectangular porous obstruction is described through experiments and scaling. The porous obstruction consists of an emergent, rectangular array of cylinders in shallow flow, a configuration that mimics aquatic vegetation. The main features of the flow depend upon the non-dimensional canopy flow-blockage, which is a function of the obstruction width and porosity. For the ranges of canopy flow-blockage tested in this paper, the fluid decelerates upstream of the obstruction over a length scale proportional to the array width. For high flow-blockage, the interior adjustment length within the porous obstruction is set by the array width. For low flow-blockage, the array's frontal area per unit volume sets the interior adjustment length. Downstream of the adjustment regions, the interior velocity is governed by a balance between the lateral divergence of the turbulent stress and canopy drag, or by a balance between the pressure gradient and canopy drag, depending on the lateral penetration into the array of Kelvin–Helmholtz (KH) vortices, which is set by the non-dimensional canopy flow-blockage. For a porous obstruction with two stream-parallel edges, the KH vortex streets along the two edges are in communication across the width of the array: a phenomenon that results in cross-array vortex organization, which significantly enhances the vortex strength and creates significant lateral transport within the porous obstruction.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Grant number EAR 0738352)en_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1017/jfm.2011.199en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleFlow adjustment and interior flow associated with a rectangular porous obstructionen_US
dc.typeArticleen_US
dc.identifier.citationRominger, Jeffrey T., and Heidi M. Nepf. “Flow Adjustment and Interior Flow Associated with a Rectangular Porous Obstruction.” Journal of Fluid Mechanics 680 (2011): 636–659.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.approverNepf, Heidi
dc.contributor.mitauthorRominger, Jeffrey Tsaros
dc.contributor.mitauthorNepf, Heidi
dc.relation.journalJournal of Fluid Mechanicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsROMINGER, JEFFREY T.; NEPF, HEIDI M.en
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record