Show simple item record

dc.contributor.authorMinnihan, Ellen Catherine
dc.contributor.authorSeyedsayamdost, Mohammad R.
dc.contributor.authorUhlin, Ulla
dc.contributor.authorStubbe, JoAnne
dc.date.accessioned2012-08-28T14:57:07Z
dc.date.available2012-08-28T14:57:07Z
dc.date.issued2011-05
dc.date.submitted2011-02
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/1721.1/72365
dc.description.abstractEscherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5′-diphosphates (NDPs) to 2′-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C[subscript 439]) in α2 by a stable diferric tyrosyl radical (Y[subscript 122]•) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 Å through a specific pathway of residues: Y[subscript 122]•→ W[subscript 48]→ Y[subscript 356] in β2 to Y[subscript 731]→ Y[subscript 730]→ C[subscript 439] in α2. To study the details of this process, 3-aminotyrosine (NH[subscript 2]Y) has been site-specifically incorporated in place of Y[subscript 356] of β. The resulting protein, Y[subscript 356]NH[subscript 2]Y-β2, and the previously generated proteins Y[subscript 731]NH[subscript 2]Y-α2 and Y[subscript 730]NH[subscript 2]Y-α2 (NH[subscript 2]Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2–0.7 s[superscript –1]. Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH[subscript 2]Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH[subscript 2]Y•) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH[subscript 2]Y• formation is biphasic (k[subscript fast] of 9–46 s[superscript –1] and k[subscript slow] of 1.5–5.0 s[subscript –1]) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH[subscript 2]Y• formation, while the k[subscript cat] of 0.5 s[superscript –1] is proposed to be associated with rate-limiting oxidation by NH[subscript 2]Y• of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y[subscript 730]NH[subscript 2]Y-α2 and Y[subscript 731]NH[subscript 2]Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (GM29595)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ja201640nen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleKinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductasesen_US
dc.typeArticleen_US
dc.identifier.citationMinnihan, Ellen C. et al. “Kinetics of Radical Intermediate Formation and Deoxynucleotide Production in 3-Aminotyrosine-Substituted Escherichia Coli Ribonucleotide Reductases.” Journal of the American Chemical Society 133.24 (2011): 9430–9440.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.approverStubbe, JoAnne
dc.contributor.mitauthorMinnihan, Ellen Catherine
dc.contributor.mitauthorFujimoto, Mohammad R.
dc.contributor.mitauthorStubbe, JoAnne
dc.relation.journalJournal of the American Chemical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMinnihan, Ellen C.; Seyedsayamdost, Mohammad R.; Uhlin, Ulla; Stubbe, JoAnneen
dc.identifier.orcidhttps://orcid.org/0000-0001-8076-4489
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record