MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Formation of Secondary Organic Aerosol from the Direct Photolytic Generation of Organic Radicals

Author(s)
Kessler, Sean Herbert; Nah, Theodora; Carrasquillo, Anthony Joseph; Jayne, John T.; Worsnop, Douglas R.; Wilson, Kevin R.; Kroll, Jesse; ... Show more Show less
Thumbnail
Downloadshk_iodides_manuscript_FINAL-1.pdf (417.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The immense complexity inherent in the formation of secondary organic aerosol (SOA)—due primarily to the large number of oxidation steps and reaction pathways involved—has limited the detailed understanding of its underlying chemistry. As a means of simplifying such complexity, here we demonstrate the formation of SOA through the photolysis of gas-phase alkyl iodides, which generates organic peroxy radicals of known structure. In contrast to standard OH-initiated oxidation experiments, photolytically initiated oxidation forms a limited number of products via a single reactive step. As is typical for SOA, the yields of aerosol generated from the photolysis of alkyl iodides depend on aerosol loading, indicating the semivolatile nature of the particulate species. However, the aerosol was observed to be higher in volatility and less oxidized than in previous multigenerational studies of alkane oxidation, suggesting that additional oxidative steps are necessary to produce oxidized semivolatile material in the atmosphere. Despite the relative simplicity of this chemical system, the SOA mass spectra are still quite complex, underscoring the wide range of products present in SOA.
Date issued
2011-05
URI
http://hdl.handle.net/1721.1/72399
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of Physical Chemistry Letters
Publisher
American Chemical Society
Citation
Kessler, Sean H. et al. “Formation of Secondary Organic Aerosol from the Direct Photolytic Generation of Organic Radicals.” The Journal of Physical Chemistry Letters 2.11 (2011): 1295–1300. Web.
Version: Author's final manuscript
ISSN
1948-7185

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.