MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Managing performance vs. accuracy trade-offs with loop perforation

Author(s)
Sidiroglou, Stelios; Misailovic, Sasa; Hoffmann, Henry Christian; Rinard, Martin C.
Thumbnail
DownloadRinard_Managing performance.pdf (263.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Many modern computations (such as video and audio encoders, Monte Carlo simulations, and machine learning algorithms) are designed to trade off accuracy in return for increased performance. To date, such computations typically use ad-hoc, domain-specific techniques developed specifically for the computation at hand. Loop perforation provides a general technique to trade accuracy for performance by transforming loops to execute a subset of their iterations. A criticality testing phase filters out critical loops (whose perforation produces unacceptable behavior) to identify tunable loops (whose perforation produces more efficient and still acceptably accurate computations). A perforation space exploration algorithm perforates combinations of tunable loops to find Pareto-optimal perforation policies. Our results indicate that, for a range of applications, this approach typically delivers performance increases of over a factor of two (and up to a factor of seven) while changing the result that the application produces by less than 10%.
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/72440
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering (ESEC/FSE '11)
Publisher
Association for Computing Machinery (ACM)
Citation
Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering (ESEC/FSE '11). ACM, New York, NY, USA, 124-134.
Version: Author's final manuscript
ISBN
978-1-4503-0443-6

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.