Show simple item record

dc.contributor.authorRinard, Martin C.
dc.date.accessioned2012-08-29T20:20:03Z
dc.date.available2012-08-29T20:20:03Z
dc.date.issued2011-01
dc.identifier.isbn978-1-4503-0485-6
dc.identifier.urihttp://hdl.handle.net/1721.1/72443
dc.description.abstractTraditional program transformations operate under the onerous constraint that they must preserve the exact behavior of the transformed program. But many programs are designed to produce approximate results. Lossy video encoders, for example, are designed to give up perfect fidelity in return for faster encoding and smaller encoded videos [10]. Machine learning algorithms usually work with probabilistic models that capture some, but not all, aspects of phenomena that are difficult (if not impossible) to model with complete accuracy [2]. Monte-Carlo computations use random simulation to deliver inherently approximate solutions to complex systems of equations that are, in many cases, computationally infeasible to solve exactly [5].en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/1929501.1929517en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleProbabilistic Accuracy Bounds for Perforated Programs: A New Foundation for Program Analysis and Transformationen_US
dc.typeArticleen_US
dc.identifier.citationMartin Rinard. 2011. Probabilistic accuracy bounds for perforated programs: a new foundation for program analysis and transformation. In Proceedings of the 20th ACM SIGPLAN workshop on Partial evaluation and program manipulation (PEPM '11). ACM, New York, NY, USA, 79-80.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverRinard, Martin C.
dc.contributor.mitauthorRinard, Martin C.
dc.relation.journalProceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM '11)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsRinard, Martinen
dc.identifier.orcidhttps://orcid.org/0000-0001-8095-8523
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record