Show simple item record

dc.contributor.authorLim, Sejoon
dc.contributor.authorBalakrishnan, Hari
dc.contributor.authorGifford, David K.
dc.contributor.authorMadden, Samuel R.
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2012-08-31T18:41:59Z
dc.date.available2012-08-31T18:41:59Z
dc.date.issued2009-12
dc.identifier.isbn978-3-642-00311-0
dc.identifier.issn1610-7438
dc.identifier.issn1610-742X
dc.identifier.urihttp://hdl.handle.net/1721.1/72494
dc.description.abstractThis paper presents a stochastic motion planning algorithm and its application to traffic navigation. The algorithm copes with the uncertainty of road traffic conditions by stochastic modeling of travel delay on road networks. The algorithm determines paths between two points that optimize a cost function of the delay probability distribution. It can be used to find paths that maximize the probability of reaching a destination within a particular travel deadline. For such problems, standard shortest-path algorithms don’t work because the optimal substructure property doesn’t hold. We evaluate our algorithm using both simulations and real-world drives, using delay data gathered from a set of taxis equipped with GPS sensors and a wireless network. Our algorithm can be integrated into on-board navigation systems as well as route-finding Web sites, providing drivers with good paths that meet their desired goals.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant EFRI-0710252)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant IIS-0426838)en_US
dc.language.isoen_US
dc.publisherSpringer Berlin/Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-00312-7_30en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleStochastic motion planning and applications to trafficen_US
dc.typeBook chapteren_US
dc.identifier.citationLim, Sejoon et al. “Stochastic Motion Planning and Applications to Traffic.” Algorithmic Foundation of Robotics VIII. Ed. Gregory S. Chirikjian et al. Vol. 57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 483-500.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverBalakrishnan, Hari
dc.contributor.mitauthorLim, Sejoon
dc.contributor.mitauthorBalakrishnan, Hari
dc.contributor.mitauthorGifford, David K.
dc.contributor.mitauthorMadden, Samuel R.
dc.contributor.mitauthorRus, Daniela L.
dc.relation.journalAlgorithmic Foundation of Robotics VIIIen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsLim, Sejoon; Balakrishnan, Hari; Gifford, David; Madden, Samuel; Rus, Danielaen
dc.identifier.orcidhttps://orcid.org/0000-0002-7470-3265
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
dc.identifier.orcidhttps://orcid.org/0000-0003-1709-4034
dc.identifier.orcidhttps://orcid.org/0000-0002-1455-9652
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record