Show simple item record

dc.contributor.authorRutishauser, Ueli
dc.contributor.authorSlotine, Jean-Jacques E.
dc.contributor.authorDouglas, Rodney J.
dc.date.accessioned2012-09-05T13:45:59Z
dc.date.available2012-09-05T13:45:59Z
dc.date.issued2012-06
dc.identifier.issn0899-7667
dc.identifier.issn1530-888X
dc.identifier.urihttp://hdl.handle.net/1721.1/72517
dc.description.abstractModels of cortical neuronal circuits commonly depend on inhibitory feedback to control gain, provide signal normalization, and selectively amplify signals using winner-take-all (WTA) dynamics. Such models generally assume that excitatory and inhibitory neurons are able to interact easily because their axons and dendrites are colocalized in the same small volume. However, quantitative neuroanatomical studies of the dimensions of axonal and dendritic trees of neurons in the neocortex show that this colocalization assumption is not valid. In this letter, we describe a simple modification to the WTA circuit design that permits the effects of distributed inhibitory neurons to be coupled through synchronization, and so allows a single WTA to be distributed widely in cortical space, well beyond the arborization of any single inhibitory neuron and even across different cortical areas. We prove by nonlinear contraction analysis and demonstrate by simulation that distributed WTA subsystems combined by such inhibitory synchrony are inherently stable. We show analytically that synchronization is substantially faster than winner selection. This circuit mechanism allows networks of independent WTAs to fully or partially compete with other.en_US
dc.language.isoen_US
dc.publisherMIT Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1162/NECO_a_00304en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Pressen_US
dc.titleCompetition Through Selective Inhibitory Synchronyen_US
dc.typeArticleen_US
dc.identifier.citationRutishauser, Ueli, Jean-Jacques Slotine, and Rodney J. Douglas. “Competition Through Selective Inhibitory Synchrony.” Neural Computation 24.8 (2012): 2033–2052. © 2012 The MIT Pressen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Nonlinear Systems Laboratoryen_US
dc.contributor.approverSlotine, Jean-Jacques E.
dc.contributor.mitauthorSlotine, Jean-Jacques E.
dc.relation.journalNeural Computationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney J.en
dc.identifier.orcidhttps://orcid.org/0000-0002-7161-7812
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record