Show simple item record

dc.contributor.authorFeldman, Dan
dc.contributor.authorSugaya, Andrew
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2012-09-05T20:01:46Z
dc.date.available2012-09-05T20:01:46Z
dc.date.issued2012-04
dc.identifier.isbn978-1-4503-1227-1
dc.identifier.urihttp://hdl.handle.net/1721.1/72535
dc.description.abstractThe wide availability of networked sensors such as GPS and cameras is enabling the creation of sensor networks that generate huge amounts of data. For example, vehicular sensor networks where in-car GPS sensor probes are used to model and monitor traffic can generate on the order of gigabytes of data in real time. How can we compress streaming high-frequency data from distributed sensors? In this paper we construct coresets for streaming motion. The coreset of a data set is a small set which approximately represents the original data. Running queries or fitting models on the coreset will yield similar results when applied to the original data set. We present an algorithm for computing a small coreset of a large sensor data set. Surprisingly, the size of the coreset is independent of the size of the original data set. combining map-and-reduce techniques with our coreset yields a system capable of compressing in parallel a stream of O(n) points using space and update time that is only O(log n). We provide experimental results and compare the algorithm to the popular Douglas-Peucker heuristic for compressing GPS data.en_US
dc.description.sponsorshipFoxconnen_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology Center. Future Urban Mobilityen_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology Centeren_US
dc.description.sponsorshipSingapore. National Research Foundationen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2185677.2185739en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleAn effective coreset compression algorithm for large scale sensor networksen_US
dc.typeArticleen_US
dc.identifier.citationDan Feldman, Andrew Sugaya, and Daniela Rus. 2012. An effective coreset compression algorithm for large scale sensor networks. In Proceedings of the 11th international conference on Information Processing in Sensor Networks (IPSN '12). ACM, New York, NY, USA, 257-268.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.approverRus, Daniela L.
dc.contributor.mitauthorFeldman, Dan
dc.contributor.mitauthorSugaya, Andrew
dc.contributor.mitauthorRus, Daniela L.
dc.relation.journalProceedings of the 11th international conference on Information Processing in Sensor Networks (IPSN '12 )en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsFeldman, Dan; Sugaya, Andrew; Rus, Daniela L.en
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record