MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An ultra-compact and efficient Li-ion battery charger circuit for biomedical applications

Author(s)
Do Valle, Bruno Guimaraes; Wentz, Christian T.; Sarpeshkar, Rahul
Thumbnail
DownloadSarpeshkar_An ultra-compact.pdf (487.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger for wirelessly powered implantable medical devices. The charger presented here takes advantage of the tanh output current profile of an operational transconductance amplifier (OTA) to smoothly transition between constant current (CC) and constant voltage (CV) charging regimes without the need for additional area- and power-consuming control circuitry. The proposed design eliminates the need for sense resistors in either the charging path or control loop by utilizing a current comparator to detect end-of-charge. The power management chip was fabricated in an AMI 0.5 μm CMOS process, consuming 0.15 mm[superscript 2] of area. This figure represents an order of magnitude reduction in area from previous designs. An initial proof-of-concept design achieved 75% power efficiency and charging voltage accuracy of 99.8% relative to the target 4.2 V.
Date issued
2010-08
URI
http://hdl.handle.net/1721.1/72541
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Valle, Bruno Do, Christian T. Wentz, and Rahul Sarpeshkar. “An Ultra-compact and Efficient Li-ion Battery Charger Circuit for Biomedical Applications.” Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS). 1224–1227. © Copyright 2010 IEEE
Version: Final published version
ISBN
978-1-4244-5309-2
978-1-4244-5308-5

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.