MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Belief Propagation for Min-Cost Network Flow: Convergence and Correctness

Author(s)
Gamarnik, David; Shah, Devavrat; Wei, Yehua
Thumbnail
DownloadShah_Belief propagation.pdf (389.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Distributed, iterative algorithms operating with minimal data structure while performing little computation per iteration are popularly known as message passing in the recent literature. Belief propagation (BP), a prototypical message-passing algorithm, has gained a lot of attention across disciplines, including communications, statistics, signal processing, and machine learning as an attractive, scalable, general-purpose heuristic for a wide class of optimization and statistical inference problems. Despite its empirical success, the theoretical understanding of BP is far from complete. With the goal of advancing the state of art of our understanding of BP, we study the performance of BP in the context of the capacitated minimum-cost network flow problem—a cornerstone in the development of the theory of polynomial-time algorithms for optimization problems and widely used in the practice of operations research. As the main result of this paper, we prove that BP converges to the optimal solution in pseudopolynomial time, provided that the optimal solution of the underlying network flow problem instance is unique and the problem parameters are integral. We further provide a simple modification of the BP to obtain a fully polynomial-time randomized approximation scheme (FPRAS) without requiring uniqueness of the optimal solution. This is the first instance where BP is proved to have fully polynomial running time. Our results thus provide a theoretical justification for the viability of BP as an attractive method to solve an important class of optimization problems.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/72573
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Journal
Operations Research
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Gamarnik, D., D. Shah, and Y. Wei. “Belief Propagation for Min-Cost Network Flow: Convergence and Correctness.” Operations Research 60.2 (2012): 410–428.
Version: Author's final manuscript
ISSN
0030-364X
1526-5463

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.