MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Macroturbulent Equilibration in a Thermally Forced Primitive Equation System

Author(s)
Jansen, Malte Friedrich; Ferrari, Raffaele
Thumbnail
DownloadJansen-2012-Macroturbulent Equil.pdf (1.420Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the observed ocean–atmosphere state. It has been argued that eddy fluxes keep the midlatitude atmosphere in a state that is marginally critical to baroclinic instability, which provides a powerful constraint on the response of the atmosphere to changes in external forcing. No comparable criterion appears to exist for the ocean. This is particularly surprising for the Southern Ocean, a region whose dynamics are very similar to the midlatitude atmosphere, but observations and numerical models suggest that the currents are supercritical. This paper aims to resolve this apparent contradiction using a combination of theoretical considerations and eddy-resolving numerical simulations. It is shown that both marginally critical and supercritical mean states can be obtained in an idealized diabatically forced (and thus atmosphere-like) Boussinesq system, if the thermal expansion coefficient is varied from large atmosphere-like values to small oceanlike values. The argument is made that the difference in the thermal expansion coefficient dominantly controls the difference in the deformation scale between the two fluids and ultimately renders eddies ineffective in maintaining a marginally critical state in the limit of small thermal expansion coefficients.
Date issued
2012-02
URI
http://hdl.handle.net/1721.1/72983
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of the Atmospheric Sciences
Publisher
American Meteorological Society
Citation
Jansen, Malte, Raffaele Ferrari, 2012: Macroturbulent Equilibration in a Thermally Forced Primitive Equation System. J. Atmos. Sci., 69, 695–713. © 2012 American Meteorological Society
Version: Final published version
ISSN
0022-4928
1520-0469

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.