MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks

Author(s)
Li, Junlun; Kuleli, Huseyin Sadi; Zhang, Haijiang; Toksoz, M. Nafi
Thumbnail
DownloadLi-2011-Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks.pdf (6.844Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A new, relatively high frequency, full waveform matching method was used to study the focal mechanisms of small, local earthquakes induced in an oil field, which are monitored by a sparse near-surface network and a deep borehole network. The determined source properties are helpful for understanding the local stress regime in this field. During the waveform inversion, we maximize both the phase and amplitude matching between the observed and modeled waveforms. We also use the polarities of the first P-wave arrivals and the average S/P amplitude ratios to better constrain the matching. An objective function is constructed to include all four criteria. For different hypocenters and source types, comprehensive synthetic tests showed that our method is robust enough to determine the focal mechanisms under the current array geometries, even when there is considerable velocity inaccuracy. The application to several tens of induced microseismic events showed satisfactory waveform matching between modeled and observed seismograms. Most of the events have a strike direction parallel with the major northeast-southwest faults in the region, and some events trend parallel with the northwest-southeast conjugate faults. The results are consistent with the in situ well breakout measurements and the current knowledge on the stress direction of this region. The source mechanisms of the studied events, together with the hypocenter distribution, indicate that the microearthquakes are caused by the reactivation of preexisting faults. We observed that the faulting mechanism varies with depth, from strike-slip dominance at shallower depth to normal faulting dominance at greater depth.
Date issued
2011-12
URI
http://hdl.handle.net/1721.1/72995
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Earth Resources Laboratory
Journal
Geophysics
Publisher
Society of Exploration Geophysicists
Citation
Li, Junlun et al. “Focal Mechanism Determination of Induced Microearthquakes in an Oil Field Using Full Waveforms from Shallow and Deep Seismic Networks.” ©2011 Society of Exploration GeophysicistsGeophysics 76.6 (2011): WC87.
Version: Final published version
ISSN
1070-485X
0016-8033

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.