MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis

Author(s)
Meissner, Alexander; Gnirke, Andreas; Bell, George W.; Ramsahoye, Bernard; Jaenisch, Rudolf; Lander, Eric Steven; ... Show more Show less
Thumbnail
DownloadMeissner-2005-Reduced representation bisulfite sequencing.pdf (586.2Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution Non-Commercial http://creativecommons.org/licenses/by-nc/2.5
Metadata
Show full item record
Abstract
We describe a large-scale random approach termed reduced representation bisulfite sequencing (RRBS) for analyzing and comparing genomic methylation patterns. BglII restriction fragments were size-selected to 500–600 bp, equipped with adapters, treated with bisulfite, PCR amplified, cloned and sequenced. We constructed RRBS libraries from murine ES cells and from ES cells lacking DNA methyltransferases Dnmt3a and 3b and with knocked-down (kd) levels of Dnmt1 (Dnmt[1[superscript kd],3a−/−,3b−/−]). Sequencing of 960 RRBS clones from Dnmt[1[superscript kd],3a−/−,3b−/−] cells generated 343 kb of non-redundant bisulfite sequence covering 66212 cytosines in the genome. All but 38 cytosines had been converted to uracil indicating a conversion rate of >99.9%. Of the remaining cytosines 35 were found in CpG and 3 in CpT dinucleotides. Non-CpG methylation was >250-fold reduced compared with wild-type ES cells, consistent with a role for Dnmt3a and/or Dnmt3b in CpA and CpT methylation. Closer inspection revealed neither a consensus sequence around the methylated sites nor evidence for clustering of residual methylation in the genome. Our findings indicate random loss rather than specific maintenance of methylation in Dnmt[1[superscript kd],3a−/−,3b−/−] cells. Near-complete bisulfite conversion and largely unbiased representation of RRBS libraries suggest that random shotgun bisulfite sequencing can be scaled to a genome-wide approach.
Date issued
2005-09
URI
http://hdl.handle.net/1721.1/73016
Department
Broad Institute of MIT and Harvard; Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Nucleic Acids Research
Publisher
Oxford University Press
Citation
Meissner, A. “Reduced Representation Bisulfite Sequencing for Comparative High-resolution DNA Methylation Analysis.” Nucleic Acids Research 33.18 (2005): 5868–5877. Web.
Version: Final published version
ISSN
0305-1048
1362-4962

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.