Show simple item record

dc.contributor.authorDalca, Adrian Vasile
dc.contributor.authorRumble, Stephen M.
dc.contributor.authorLevy, Samuel
dc.contributor.authorBrudno, Michael
dc.date.accessioned2012-09-17T20:08:07Z
dc.date.available2012-09-17T20:08:07Z
dc.date.issued2010-06
dc.identifier.issn1460-2059
dc.identifier.issn1367-4803
dc.identifier.urihttp://hdl.handle.net/1721.1/73027
dc.description.abstractMotivation: High-throughput sequencing (HTS) technologies are transforming the study of genomic variation. The various HTS technologies have different sequencing biases and error rates, and while most HTS technologies sequence the residues of the genome directly, generating base calls for each position, the Applied Biosystem's SOLiD platform generates dibase-coded (color space) sequences. While combining data from the various platforms should increase the accuracy of variation detection, to date there are only a few tools that can identify variants from color space data, and none that can analyze color space and regular (letter space) data together. Results: We present VARiD—a probabilistic method for variation detection from both letter- and color-space reads simultaneously. VARiD is based on a hidden Markov model and uses the forward-backward algorithm to accurately identify heterozygous, homozygous and tri-allelic SNPs, as well as micro-indels. Our analysis shows that VARiD performs better than the AB SOLiD toolset at detecting variants from color-space data alone, and improves the calls dramatically when letter- and color-space reads are combined.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)en_US
dc.description.sponsorshipMathematics of Information Technology and Complex Systems (Network)en_US
dc.description.sponsorshipLife Technologies, Inc.en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/bioinformatics/btq184en_US
dc.rightsCreative Commons Attribution Non-Commercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5en_US
dc.sourceOxforden_US
dc.titleVARiD: A variation detection framework for color-space and letter-space platformsen_US
dc.typeArticleen_US
dc.identifier.citationDalca, A. V. et al. “VARiD: A Variation Detection Framework for Color-space and Letter-space Platforms.” Bioinformatics 26.12 (2010): i343–i349. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverDalca, Adrian Vasile
dc.contributor.mitauthorDalca, Adrian Vasile
dc.relation.journalBioinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDalca, A. V.; Rumble, S. M.; Levy, S.; Brudno, M.en
dc.identifier.orcidhttps://orcid.org/0000-0002-8422-0136
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record