MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal quantization for compressive sensing under message passing reconstruction

Author(s)
Kamilov, Ulugbek; Goyal, Vivek K.; Rangan, Sundeep
Thumbnail
DownloadGoyal_Optimal quantization.pdf (144.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We consider the optimal quantization of compressive sensing measurements along with estimation from quantized samples using generalized approximate message passing (GAMP). GAMP is an iterative reconstruction scheme inspired by the belief propagation algorithm on bipartite graphs which generalizes approximate message passing (AMP) for arbitrary measurement channels. Its asymptotic error performance can be accurately predicted and tracked through the state evolution formalism. We utilize these results to design mean-square optimal scalar quantizers for GAMP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.
Date issued
2011-10
URI
http://hdl.handle.net/1721.1/73036
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), 2011
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Kamilov, Ulugbek, Vivek K Goyal, and Sundeep Rangan. “Optimal Quantization for Compressive Sensing Under Message Passing Reconstruction.” IEEE International Symposium on Information Theory Proceedings (ISIT), 2011. 459–463.
Version: Author's final manuscript
ISBN
978-1-4577-0594-6
978-1-4577-0596-0
ISSN
2157-8095

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.