MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physical Module Networks: an integrative approach for reconstructing transcription regulation

Author(s)
Regev, Aviv; Novershtern, Noa; Friedman, Nir
Thumbnail
DownloadNovershtern-2011-Physical Module Networks.pdf (836.6Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution Non-Commercial http://creativecommons.org/licenses/by-nc/2.5
Metadata
Show full item record
Abstract
Motivation: Deciphering the complex mechanisms by which regulatory networks control gene expression remains a major challenge. While some studies infer regulation from dependencies between the expression levels of putative regulators and their targets, others focus on measured physical interactions. Results: Here, we present Physical Module Networks, a unified framework that combines a Bayesian model describing modules of co-expressed genes and their shared regulation programs, and a physical interaction graph, describing the protein–protein interactions and protein-DNA binding events that coherently underlie this regulation. Using synthetic data, we demonstrate that a Physical Module Network model has similar recall and improved precision compared to a simple Module Network, as it omits many false positive regulators. Finally, we show the power of Physical Module Networks to reconstruct meaningful regulatory pathways in the genetically perturbed yeast and during the yeast cell cycle, as well as during the response of primary epithelial human cells to infection with H1N1 influenza. Availability: The PMN software is available, free for academic use at http://www.compbio.cs.huji.ac.il/PMN/. Contact: aregev@broad.mit.edu; nirf@cs.huji.ac.il
Date issued
2011-07
URI
http://hdl.handle.net/1721.1/73070
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Bioinformatics
Publisher
Oxford University Press (OUP)
Citation
Novershtern, N., A. Regev, and N. Friedman. “Physical Module Networks: An Integrative Approach for Reconstructing Transcription Regulation.” Bioinformatics 27.13 (2011): i177–i185.
Version: Final published version
ISSN
1367-4803
1460-2059

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.