MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explicit solutions for root optimization of a polynomial family

Author(s)
Blondel, Vincent D.; Gurbuzbalaban, Mert; Megretski, Alexandre; Overton, Michael L.
Thumbnail
DownloadMegretski_Explicit solutions.pdf (247.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Given a family of real or complex monic polynomials of fixed degree with one fixed affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or abscissa (largest real part of the roots). We give constructive methods for finding globally optimal solutions to these problems. In the real case, our methods are based on theorems that extend results in Raymond Chen's 1979 PhD thesis. In the complex case, our methods are based on theorems that are new, easier to state but harder to prove than in the real case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.
Date issued
2010-12
URI
http://hdl.handle.net/1721.1/73103
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the 49th IEEE Conference on Decision and Control (CDC), 2010
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Blondel, Vincent D. et al. “Explicit Solutions for Root Optimization of a Polynomial Family.” Proceedings of the 49th IEEE Conference on Decision and Control (CDC), 2010. 485–488. © Copyright 2010 IEEE
Version: Final published version
ISBN
978-1-4244-7745-6
ISSN
0743-1546

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.