Scalable, accurate multicore simulation in the 1000-core era
Author(s)
Lis, Mieszko; Ren, Pengju; Cho, Myong Hyon; Shim, Keun Sup; Fletcher, Christopher Wardlaw; Khan, Omer; Devadas, Srinivas; ... Show more Show less
DownloadDevadas-Scalable accurate.pdf (913.4Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We present HORNET, a parallel, highly configurable, cycle-level multicore simulator based on an ingress-queued worm-hole router NoC architecture. The parallel simulation engine offers cycle-accurate as well as periodic synchronization; while preserving functional accuracy, this permits tradeoffs between perfect timing accuracy and high speed with very good accuracy. When run on 6 separate physical cores on a single die, speedups can exceed a factor of over 5, and when run on a two-die 12-core system with 2-way hyperthreading, speedups exceed 11 ×. Most hardware parameters are configurable, including memory hierarchy, interconnect geometry, bandwidth, crossbar dimensions, and parameters driving power and thermal effects. A highly parametrized table-based NoC design allows a variety of routing and virtual channel allocation algorithms out of the box, ranging from simple DOR routing to complex Valiant, ROMM, or PROM schemes, BSOR, and adaptive routing. HORNET can run in network-only mode using synthetic traffic or traces, directly emulate a MIPS-based multicore, or function as the memory subsystem for native applications executed under the Pin instrumentation tool. HORNET is freely available under the open-source MIT license at http://csg.csail.mit.edu/hornet/.
Date issued
2011-05Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2011
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Lis, Mieszko et al. “Scalable, Accurate Multicore Simulation in the 1000-core Era.” IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2011. 175–185.
Version: Author's final manuscript
ISBN
978-1-61284-368-1
978-1-61284-367-4