Show simple item record

dc.contributor.authorYoong Keok, Lee
dc.contributor.authorHaghighi, Aria
dc.contributor.authorBarzilay, Regina
dc.date.accessioned2012-09-24T20:04:28Z
dc.date.available2012-09-24T20:04:28Z
dc.date.issued2011-06
dc.identifier.urihttp://hdl.handle.net/1721.1/73140
dc.description.abstractThe connection between part-of-speech (POS) categories and morphological properties is well-documented in linguistics but underutilized in text processing systems. This paper proposes a novel model for morphological segmentation that is driven by this connection. Our model learns that words with common affixes are likely to be in the same syntactic category and uses learned syntactic categories to refine the segmentation boundaries of words. Our results demonstrate that incorporating POS categorization yields substantial performance gains on morphological segmentation of Arabic.en_US
dc.description.sponsorshipUnited States. Army Research Office (contract/grant number W911NF-10-1-0533)en_US
dc.description.sponsorshipU.S. Army Research Laboratory (contract/grant number W911NF-10-1-0533)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=2018937en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleModeling Syntactic Context Improves Morphological Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationLee, Yoong Keok, Aria Haghighi, and Regina Barzilay. "Modeling syntactic context improves morphological segmentation." In Proceedings of the Fifteenth Conference on Computational Natural Language Learning (CoNLL '11). Association for Computational Linguistics, Portland, Oregon, USA, June 23–24, 2011. pp.1-9. ©2011 Association for Computational Linguistics.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverBarzilay, Regina
dc.contributor.mitauthorBarzilay, Regina
dc.contributor.mitauthorYoong Keok, Lee
dc.contributor.mitauthorHaghighi, Aria
dc.relation.journalProceedings of the Fifteenth Conference on Computational Natural Language Learning, CoNLL '11en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsLee, Yoong Keok; Haghighi, Aria; Barzilay, Reginaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record