MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed scalar quantization for computing: High-resolution analysis and extensions

Author(s)
Misra, Vinith; Goyal, Vivek K.; Varshney, Lav Raj
Thumbnail
DownloadGoyal_Distributed scalar.pdf (698.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Communication of quantized information is frequently followed by a computation. We consider situations of distributed functional scalar quantization: distributed scalar quantization of (possibly correlated) sources followed by centralized computation of a function. Under smoothness conditions on the sources and function, companding scalar quantizer designs are developed to minimize mean-squared error (MSE) of the computed function as the quantizer resolution is allowed to grow. Striking improvements over quantizers designed without consideration of the function are possible and are larger in the entropy-constrained setting than in the fixed-rate setting. As extensions to the basic analysis, we characterize a large class of functions for which regular quantization suffices, consider certain functions for which asymptotic optimality is achieved without arbitrarily fine quantization, and allow limited collaboration between source encoders. In the entropy-constrained setting, a single bit per sample communicated between encoders can have an arbitrarily large effect on functional distortion. In contrast, such communication has very little effect in the fixed-rate setting.
Date issued
2011-07
URI
http://hdl.handle.net/1721.1/73159
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Misra, Vinith, Vivek K. Goyal, and Lav R. Varshney. “Distributed Scalar Quantization for Computing: High-Resolution Analysis and Extensions.” IEEE Transactions on Information Theory 57.8 (2011): 5298–5325.
Version: Author's final manuscript
ISSN
0018-9448
1557-9654

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.