MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration

Author(s)
Gilleland, Cody Lee; Rohde, Christopher Benjamin; Samara, Chrysanthi; Yanik, Mehmet Fatih; Haggarty, Stephen J.
Thumbnail
DownloadYanik_Large-scale in vivo.pdf (1.244Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Discovery of molecular mechanisms and chemical compounds that enhance neuronal regeneration can lead to development of therapeutics to combat nervous system injuries and neurodegenerative diseases. By combining high-throughput microfluidics and femtosecond laser microsurgery, we demonstrate for the first time large-scale in vivo screens for identification of compounds that affect neurite regeneration. We performed thousands of microsurgeries at single-axon precision in the nematode Caenorhabditis elegans at a rate of 20 seconds per animal. Following surgeries, we exposed the animals to a hand-curated library of approximately one hundred small molecules and identified chemicals that significantly alter neurite regeneration. In particular, we found that the PKC kinase inhibitor staurosporine strongly modulates regeneration in a concentration- and neuronal type-specific manner. Two structurally unrelated PKC inhibitors produce similar effects. We further show that regeneration is significantly enhanced by the PKC activator prostratin.
Date issued
2010-10
URI
http://hdl.handle.net/1721.1/73171
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences
Citation
Samara, C. et al. “Large-scale in Vivo Femtosecond Laser Neurosurgery Screen Reveals Small-molecule Enhancer of Regeneration.” Proceedings of the National Academy of Sciences 107.43 (2010): 18342–18347. © 2010 National Academy of Sciences.
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.