Show simple item record

dc.contributor.authorBulyk, Martha L.
dc.contributor.authorPhilippakis, Anthony A.
dc.contributor.authorAlleyne, Trevis M.
dc.contributor.authorPeña-Castillo, Lourdes
dc.contributor.authorBadis, Gwenael
dc.contributor.authorTalukder, Shaheynoor
dc.contributor.authorBerger, Michael F.
dc.contributor.authorGehrke, Andrew R.
dc.contributor.authorMorris, Quaid D.
dc.contributor.authorHughes, Timothy R.
dc.date.accessioned2012-09-26T14:41:46Z
dc.date.available2012-09-26T14:41:46Z
dc.date.issued2008-12
dc.date.submitted2008-11
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.urihttp://hdl.handle.net/1721.1/73182
dc.description.abstractMotivation: Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA–protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. Results: We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF–DNA recognition, and suggest a rational approach for future analyses of TF families. Contact: t.hughes@utorotno.ca Supplementary information: Supplementary data are available at Bioinformatics online.en_US
dc.description.sponsorshipCanadian Institutes of Health Researchen_US
dc.description.sponsorshipOntario Research Funden_US
dc.description.sponsorshipNational Institutes of Health (U.S.)en_US
dc.description.sponsorshipNational Human Genome Research Institute (U.S.)en_US
dc.language.isoen_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/bioinformatics/btn645en_US
dc.rightsCreative Commons Attribution Non-Commercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5en_US
dc.sourceOxforden_US
dc.titlePredicting the binding preference of transcription factors to individual DNA k-mersen_US
dc.typeArticleen_US
dc.identifier.citationAlleyne, T. M. et al. “Predicting the Binding Preference of Transcription Factors to Individual DNA K-mers.” Bioinformatics 25.8 (2008): 1012–1018.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorBulyk, Martha L.
dc.contributor.mitauthorPhilippakis, Anthony A.
dc.relation.journalBioinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAlleyne, T. M.; Pena-Castillo, L.; Badis, G.; Talukder, S.; Berger, M. F.; Gehrke, A. R.; Philippakis, A. A.; Bulyk, M. L.; Morris, Q. D.; Hughes, T. R.en
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record