MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biochemical Characterization of the O-Linked Glycosylation Pathway in Neisseria gonorrhoeae Responsible for Biosynthesis of Protein Glycans Containing N,N '-Diacetylbacillosamine

Author(s)
Hartley, Meredith D.; Morrison, Michael James; Imperiali, Barbara; Aas, Finn Erik; Børud, Bente; Koomey, Michael; ... Show more Show less
Thumbnail
DownloadImperiali_Biochemical characterization.pdf (1.908Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The O-linked protein glycosylation pathway in Neisseria gonorrhoeae is responsible for the synthesis of a complex oligosaccharide on undecaprenyl diphosphate and subsequent en bloc transfer of the glycan to serine residues of select periplasmic proteins. Protein glycosylation (pgl) genes have been annotated on the basis of bioinformatics and top-down mass spectrometry analysis of protein modifications in pgl-null strains [Aas, F. E., et al. (2007) Mol. Microbiol. 65, 607–624; Vik, A., et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 4447–4452], but relatively little biochemical analysis has been performed to date. In this report, we present the expression, purification, and functional characterization of seven Pgl enzymes. Specifically, the enzymes studied are responsible for synthesis of an uncommon uridine diphosphate (UDP)-sugar (PglD, PglC, and PglB-acetyltransferase domain), glycan assembly (PglB-phospho-glycosyltransferase domain, PglA, PglE, and PglH), and final oligosaccharide transfer (PglO). UDP-2,4-diacetamido-2,4,6-trideoxy-α-d-hexose (DATDH), which is the first sugar in glycan biosynthesis, was produced enzymatically, and the stereochemistry was assigned as uridine diphosphate N′-diacetylbacillosamine (UDP-diNAcBac) by nuclear magnetic resonance characterization. In addition, the substrate specificities of the phospho-glycosyltransferase, glycosyltransferases, and oligosaccharyltransferase (OTase) were analyzed in vitro, and in most cases, these enzymes exhibited strong preferences for the native substrates relative to closely related glycans. In particular, PglO, the O-linked OTase, and PglB(Cj), the N-linked OTase from Campylobacter jejuni, preferred the native N. gonorrhoeae and C. jejuni substrates, respectively. This study represents the first comprehensive biochemical characterization of this important O-linked glycosylation pathway and provides the basis for further investigations of these enzymes as antibacterial targets.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/73501
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Chemistry
Journal
Biochemistry
Publisher
American Chemical Society (ACS)
Citation
Hartley, Meredith D. et al. “Biochemical Characterization of the O-Linked Glycosylation Pathway in Neisseria gonorrhoeae Responsible for Biosynthesis of Protein Glycans Containing N,N′-Diacetylbacillosamine.” Biochemistry 50.22 (2011): 4936–4948.
Version: Author's final manuscript
ISSN
0006-2960
1520-4995

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.