Show simple item record

dc.contributor.authorGlass, James R.
dc.contributor.authorZhang, Yaodong, Ph. D. Massachusetts Institute of Technology
dc.date.accessioned2012-10-01T16:23:45Z
dc.date.available2012-10-01T16:23:45Z
dc.date.issued2010-01
dc.date.submitted2009-12
dc.identifier.isbn978-1-4244-5478-5
dc.identifier.issn978-1-4244-5479-2
dc.identifier.urihttp://hdl.handle.net/1721.1/73507
dc.description.abstractIn this paper, we present an unsupervised learning framework to address the problem of detecting spoken keywords. Without any transcription information, a Gaussian Mixture Model is trained to label speech frames with a Gaussian posteriorgram. Given one or more spoken examples of a keyword, we use segmental dynamic time warping to compare the Gaussian posteriorgrams between keyword samples and test utterances. The keyword detection result is then obtained by ranking the distortion scores of all the test utterances. We examine the TIMIT corpus as a development set to tune the parameters in our system, and the MIT Lecture corpus for more substantial evaluation. The results demonstrate the viability and effectiveness of our unsupervised learning framework on the keyword spotting task.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ASRU.2009.5372931en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleUnsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgramsen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Yaodong, and James R. Glass. “Unsupervised Spoken Keyword Spotting via Segmental DTW on Gaussian Posteriorgrams.” Proceedings of the 2009 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU 2009) IEEE, 2009. 398–403. (c) 2009 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverGlass, James R.
dc.contributor.mitauthorGlass, James R.
dc.contributor.mitauthorZhang, Yaodong
dc.relation.journalIEEE Workshop on Automatic Speech Recognition & Understanding, 2009 (ASRU 2009)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsZhang, Yaodong; Glass, James R.en
dc.identifier.orcidhttps://orcid.org/0000-0002-3097-360X
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record