MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inferring rankings using constrained sensing

Author(s)
Jagabathula, Srikanth
Thumbnail
DownloadShah_Inferring rankings.pdf (336.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We consider the problem of recovering a function over the space of permutations (or, the symmetric group) over n elements from given partial information; the partial information we consider is related to the group theoretic Fourier Transform of the function. This problem naturally arises in several settings such as ranked elections, multi-object tracking, ranking systems, and recommendation systems. Inspired by the work of Donoho and Stark in the context of discrete-time functions, we focus on non-negative functions with a sparse support (support size <;<; domain size). Our recovery method is based on finding the sparsest solution (through l[subscript 0] optimization) that is consistent with the available information. As the main result, we derive sufficient conditions for functions that can be recovered exactly from partial information through l[subscript 0] optimization. Under a natural random model for the generation of functions, we quantify the recoverability conditions by deriving bounds on the sparsity (support size) for which the function satisfies the sufficient conditions with a high probability as n → ∞. ℓ0 optimization is computationally hard. Therefore, the popular compressive sensing literature considers solving the convex relaxation, ℓ[subscript 1] optimization, to find the sparsest solution. However, we show that ℓ[subscript 1] optimization fails to recover a function (even with constant sparsity) generated using the random model with a high probability as n → ∞. In order to overcome this problem, we propose a novel iterative algorithm for the recovery of functions that satisfy the sufficient conditions. Finally, using an Information Theoretic framework, we study necessary conditions for exact recovery to be possible.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/73523
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Jagabathula, S.; Shah, D.; , "Inferring Rankings Using Constrained Sensing," Information Theory, IEEE Transactions on , vol.57, no.11, pp.7288-7306, Nov. 2011
Version: Author's final manuscript
ISSN
0018-9448

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.